3.3 Rational Inequalities

The graph of a rational function y = f(x) is given. Use the graph to give the solution set of the following.

(a) f(x) = 0

- (b) f(x) < 0
- (c) f(x) > 0

Do not use a calculator.

- (a) What is the solution set of f(x)=0?
 Crosses the x-axis
 ★ +
 ★ +
 The solution set is { -2 }. (Type an integer or a decimal. Use a comma to separate answers as needed.)
 (b) What is the solution set of f(x)<0? Below the x-axis
 ★ The solution set is (-2,0). (Type your answer in interval notation.)
 (c) What is the solution set of f(x)<0? Above the x-axis
 ★ The solution set is (-∞, -2)U(0,∞). (Type your answer in interval notation.)

 2) The graph of a rational function y = f(x) is given. Use the graph to give the solution set of the following.
 - (a) f(x) = 0
 - (b) f(x) < 0
 - (c) f(x) > 0

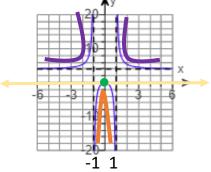
Do not use a calculator.

(a) What is the solution set of f(x) = 0?

 $\begin{array}{c} \text{Crosses the x-axis} \\ \textcircled{0} (Type an integer or a decimal.) \\ (b) What is the solution set of f(x) < 0? \\ \end{array} \begin{array}{c} \text{Below the x-axis} \\ \begin{array}{c} \text{Hervals (-\infty,-1) (-1,0) (0,1) (1, \infty)} \\ \end{array} \end{array}$

(c) What is the solution set of $f(x) \ge 0$? Above the x-axis

★A. (-∞, -1)U(1,∞)

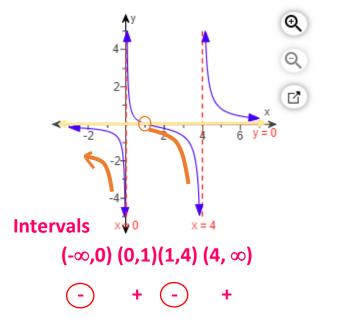


ve the		10	/	
axis 🕳	y:	3 5		x
-	10 -	5	5	10
Intervals (-	∞ ,-2)	(-2,0)	(0, ∞)
	+	-	+	

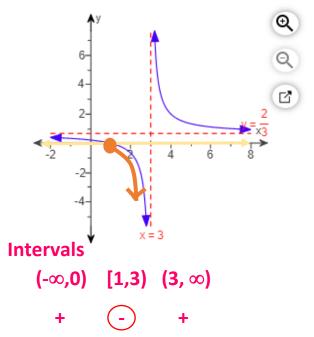
Math 161

THOMPSON

3) Solve the inequality R(x) < 0, where $R(x) = \frac{x-1}{x(x-4)}$, by using the graph of the function.



4) Solve the inequality $R(x) \le 0$, where $R(x) = \frac{2x-2}{3x-9}$, by using the graph of the function.



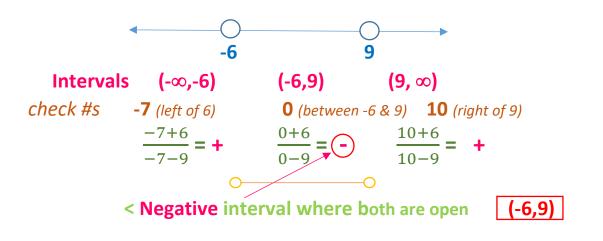
The solution set for R(x < 0 is $(-\infty,0)U(1,4)$. (Type your answer in interval notation.)

The solution set for $R(x) \le 0$ is [1,3). (Type your answer in interval notation.)

Below and ON the x-axis

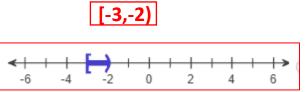
Includes 1 but not 3

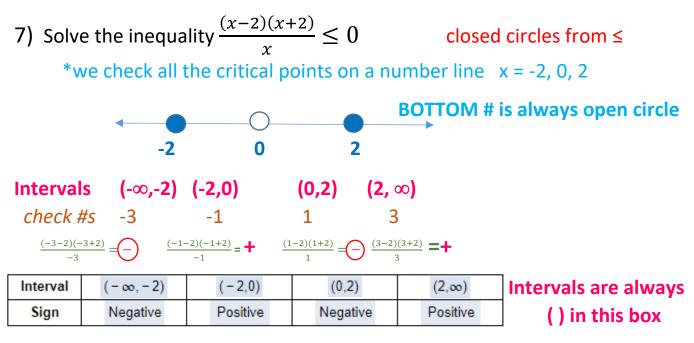
5) Solve the inequality $\frac{x+6}{x-9} < 0$ *we check all the critical points on a number line x = -6, 9



 Solve the rational inequality and graph the solution set on a real number line. Express the solution set in interval notation.

 $\frac{x+3}{x+2} \le 0$ *we check all the critical points on a number line x = -3, -2= 3 = -3 = -2 = 3 = -2 = 3 = 3 = -2 = 3 = 3 = 3 = -2 = 3

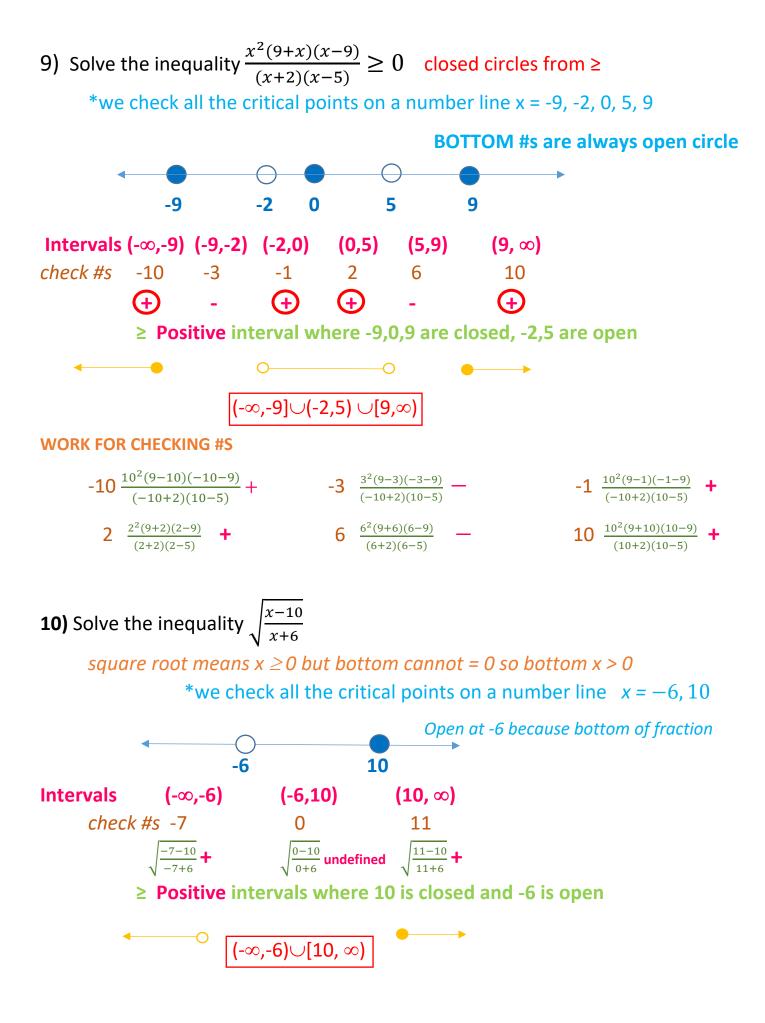




Segative intervals where -2 and 2 are closed, 0 is open

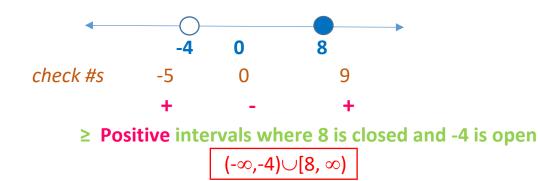
_____ [- ∞,-2] ∪(0,2]

8) Solve the inequality $\frac{(x-5)^2}{x^2-9} \ge 0$ *we check all the critical points on a number line x = -3, 3, 5BOTTOM #s are always open circle -3 3 5 Intervals $(-\infty, -2)$ (-3,3) (3,5) $(5,\infty)$ check #s -4 0 4 6 $\frac{(-4-5)^2}{4^2-9} = \bigoplus \frac{(0-5)^2}{6^2-9} = \bigoplus \frac{(6-5)^2}{6^2-9} = \bigoplus$ \ge Positive intervals where 5 is closed, -3,3 are open $(-\infty, -3) \cup (3, \infty)$



Another 10) Solve the inequality $\sqrt{\frac{x-8}{x+4}}$

square root is $x \ge 0 \rightarrow$ bottom cannot = 0; **Open at -4 because bottom of fraction** *we check all the critical points on a number line x = -4, 8

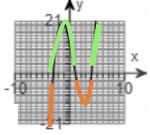


EXTRA EXAMPLES

A) Graph the following polynomial function by hand. Then solve the equation and inequalities

 $P(x) = x^{3} - 2x^{2} - 11x + 12$ = (x - 4)(x - 1)(x + 3) crosses at -3,1,4 (a) P(x) = 0 (b) P(x) < 0 (c) P(x) > 0

(a) The solution set for P(x) = 0 is $\{-3, 1, 4\}$. (Use a comma to separate answers as needed.)



(b) The solution set for P(x) < 0 is $(-\infty, -3) \cup (1, 4)$. Graph below the x-axis (Type your answer in interval notation.)

(c) The solution set for $P(x) \ge 0$ is $(-3,1)U(4,\infty)$. Graph above the x-axis (Type your answer in interval notation.)

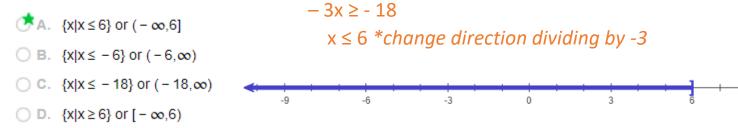
B) Graph the following polynomial function by hand. Then solve the equation and inequalities.

 $P(x) = x^{4} + 4x^{3} - 3x^{2} - 18x$ $= x(x - 2)(x + 3)^{2}$ crosses at 0,2 touches at -3
(a) P(x) = 0(b) $P(x) \ge 0$ (c) $P(x) \le 0$ on x axis
(a) The solution set for P(x) = 0 is $\{-3,0,2\}$.
(Use a comma to separate answers as needed.)
(b) The solution set for $P(x) \ge 0$ is $(-\infty,0] \cup [2,\infty)$.
(b) The solution set for $P(x) \ge 0$ is $(-\infty,0] \cup [2,\infty)$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.
(c) The solution set for $P(x) \le 0$ is $\{-3\} \cup [0,2]$.

C) Solve the inequality. Express your answer using set notation or interval notation. Graph the solution set.

 $17 - 3x \ge -1$

Choose the correct answer below that is the solution set to the inequality.

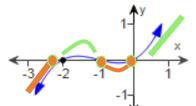


D) Use the graph of the function f to solve the inequality.

(a) f(x) > 0 $(-2, -1) \cup (0, \infty)$ (b) $f(x) \le 0$ $(-\infty, -2] \cup [-1, 0]$

a) *since it is >, it does not include the point on the x-axis and parenthesis

b) *since it is \leq , it does include the point on the x-axis and brackets

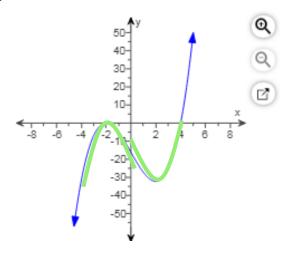


- E) Use the graph of the function f to solve the inequality.
 - (a) f(x) < 0 $(-3,0) \cup (1, \infty)$ (b) $f(x) \ge 0$ $(-\infty, -3] \cup [1,1]$ a) since it is <, below (not on) the x-axis paranthesis b) *since it is \ge , on and above the x-axis and brackets

 $\begin{array}{c} 4 \\ 2 \\ -8 \\ -8 \\ -6 \\ -6 \\ -6 \\ -8 \\ -10 \\ -12 \end{array}$

Solve the inequality f(x) < 0, where $f(x) = -x^2(x + 4)$, by using the graph of the function.

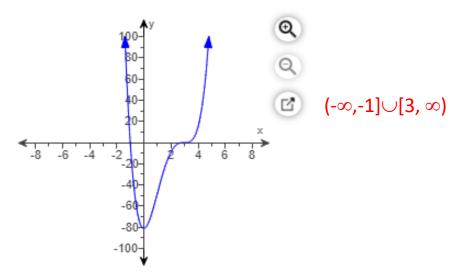
G) Solve the inequality $f(x) \le 0$, where $f(x) = (x - 4)(x + 2)^2$, by using the graph of the function.



F)

(- ∞ ,4] since it is \leq , below and on the x-axis

H) Solve the inequality $f(x) \ge 0$, where $f(x) = 3(x + 1)(x - 3)^3$, by using the graph of the function.



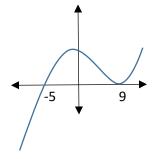
Solve the inequality algebraically.

 $(x-9)^2(x+5) < 0$ Intercepts are -5 and 9

List the intervals and sign in each interval. Complete the following table. (Type your answers in interval notation. Use ascending order.)

Interval	(-∞,-5)	(-5,9)	(9,∞)
Sign	Negative	Positive	Positive

*easiest to make a graph of x³ that touches at 9 crosses at -5

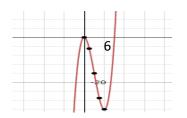


Use this graph to fill in the positive or negative in the chart **below** the x-axis since it is < 0 $(-\infty, -5)$

J) Solve the inequality $x^3-6x^2 > 0$ factor first

 $5x^2 > 0$ factor first $x^2(x-6) > 0$ x-intercepts are 0 and 6

*easiest to make a graph of x³ that touches at 0 and crosses at 6



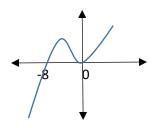
above the x-axis since it is > 0

(6,∞)

 κ) Solve the inequality $3x^3 > -24x^2$ $3x^3 + 24x^2 > 0$

factor first $3x^{2}(x+8) > 0$ x-intercepts are 0 and -8

*easiest to make a graph of x³ that touches at 0 and crosses at -8



Interval	$(-\infty, -8)$	(-8,0)	(0,∞)
Sign	Negative	Positive	Positive

above the x-axis since it is > 0 open circle at 0

 $(-8,0) \cup (0,\infty)$

L) Solve the inequality $(x-3)(x-1)(x+2) \ge 0$ x-intercepts are -2, 1 and 3

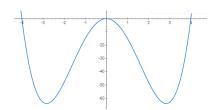
*easiest to make a graph of x³ that crosses at -2, 1, 3

above and on the x-axis since it is ≥ 0

[-2, 1]∪[3, ∞)

M) Solve the inequality $x^4 > 16x^2$ solve first then factor $x^{4}-16x^{2} > 0$ x²(x²-16)>0 x²(x+4)(x-4)>0 *x*-intercepts are -4, 0 and 4

*easiest to look at the graph of x⁴ and touches at 0 crosses at -4 and 4

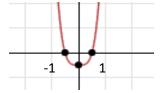


above the x-axis since it is > 0

N) Solve the inequality
$$x^4 > 16$$
 solve first then factor
 $x^4 - 16 > 0$
 $(x^2 - 4)(x^2 + 4) > 0$
 $(x - 2)(x + 2)(x^2 + 4) > 0$ x-intercepts are -2, 2
*easiest to look at the graph of x^4 and crosses at -2 and 2
above the x-axis since it is > 0
 $(-\infty, -2) \cup (2, \infty)$

O) Solve the inequality $\sqrt{x^4 - 1}$ square root means $x \ge 0$ $(x^2-1)(x^2+1)$ $(x-1)(x+1)(x^2+1)$

*easiest to look at the graph of x⁴ and crosses at -1,1



above and on the x-axis since it is \geq 0

(-∞,-1]∪[1,∞)

P) Solve the quadratic inequality. Give the solution set in interval notation.

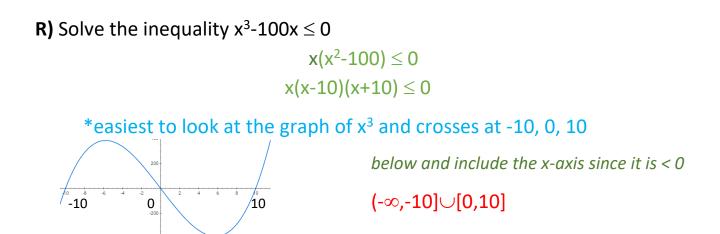
 $(x+8)^2 \le 0$

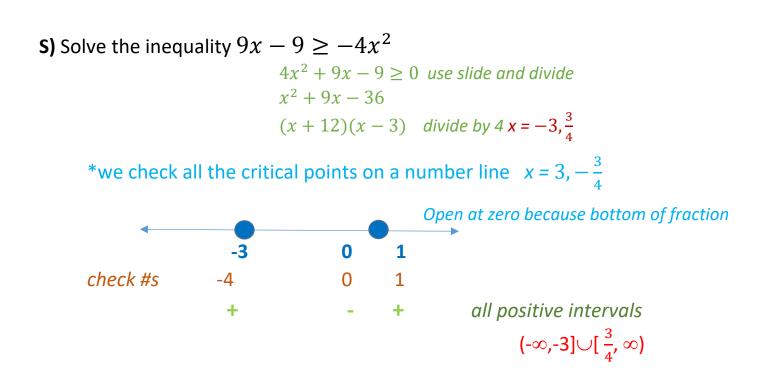
_

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

The solution set is the single point { -8}. (Type an integer or a simplified fraction.) **Q)** Solve the inequality (x-3)(x-1)(x+2) > 0

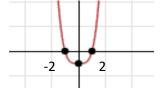
*easiest to look at the graph of x^3 and crosses at -2, 1, 3 *above the x-axis since it is > 0* (-2, 1) \cup (3, ∞)





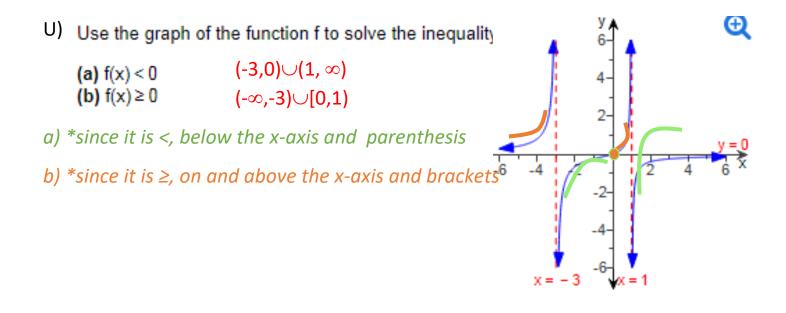
T) Solve the inequality $\sqrt{x^4 - 16}$ square root means $x \ge 0$ (x²-4)(x²+4) (x-2)(x+2)(x²+1)

*easiest to look at the graph of x⁴ and crosses at -2,2



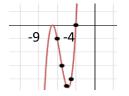
We are looking for above and include the x-axis since it is \geq 0

(-∞,-2]∪[,∞)



V) Solve the inequality $\frac{(x-4)(x+4)}{x} \ge 0$ *we check all the critical points on a number line x = -4, 0, 4 *Open at zero because bottom of fraction* -4 0 4 *check #s* -5 -1 1 5 - + - + *all positive intervals* [-4,0) \cup [4, ∞) **W)** Solve the inequality $(x+9)^2(x+4) < 0$ *x-intercepts are -9 and -4*

*easiest to make a graph of x³ that touches at -9 crosses at -4



(-∞,-9)∪(-9,-4)